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Abstract
We study the motion of two non-interacting quantum particles performing
a random walk on a line and analyse the probability that the two particles
are detected at a particular position after a certain number of steps (meeting
problem). The results are compared to the corresponding classical problem and
differences are pointed out. Analytic formulae for the meeting probability and
its asymptotic behaviour are derived. The decay of the meeting probability for
distinguishable particles is faster than in the classical case, but not quadratically.
Entangled initial states and the bosonic or fermionic nature of the walkers are
considered.

PACS numbers: 03.67.−a, 05.40.Fb

1. Introduction

Random walks are a long studied problem not only in classical physics but also in many other
branches of science [1]. Random walks help us to understand complex systems, their dynamics
and the connection between dynamics and the underlying topological structure. More
recently, quantum analogues [2, 3] of the classical random walks have attracted considerable
attention.

Quantum walks were introduced in the early 1990s by Aharonov, Davidovich and Zagury
[2]. Since then the topic has attracted considerable interest. The continuing attraction can
be traced back to at least two reasons. First, the quantum walk is of sufficient interest in its
own right because there are fundamental differences compared to the classical random walk.
Next, quantum walks offer quite a number of possible applications. One of the best known is
the link between quantum walks and quantum search algorithms which are superior to their
classical counterparts [4, 5]. Another goal is to find new, efficient quantum algorithms by
studying various types of quantum walks. Let us point out that from a quantum mechanical
point of view there is no randomness involved in the time evolution of a quantum walk. The
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evolution of the walker is determined completely by a unitary time evolution. This applies to
the two most common forms: the discrete [2] and the continuous time [5] quantum walks. For
a review on quantum walks see for instance [3].

Several aspects of quantum walks have been analysed. First, using various approaches, the
asymptotics of the unusual walker probability distribution was analysed [6–11]. Next, attention
was paid to the explanation of the unusual probability distribution as a wave phenomenon
[7, 15]. This question is of particular interest as there are several proposals to realize quantum
walks [12–19], in particular proposals using optical elements as the basic blocks for the
quantum walks [14, 15]. Among the first ones was the optical implementation of the Galton
board [16]. An ion trap proposal as well as a neutral atom implementation was put forward a
few years later [17–19]. The neutral atom proposal led to a real experiment in the year 2003
[20].

Apart from the studies of elementary quantum walks their generalizations have been
investigated [21]. Generalizations of quantum walks to higher dimensions [22] have been put
forward and differences to the simpler models pointed out. Next the effect of randomness
in optical implementations on quantum walks and its link to localization was analysed [23].
Among further generalizations the behaviour of more than one walker (particle) in networks
realizing quantum walks has also been studied [24, 25]. The aim of the present paper is to
add to this line of studies. We study the evolution of two walkers performing a quantum
walk. The evolution of each of the two walkers is subjected to the same rules. One of the
interesting questions, when two walkers are involved, is to clarify how the probability of the
walkers to meet changes with time (or number of steps taken in walk). Because the single
quantum walker behaviour differs from its classical counterpart it has to be expected that
the same applies to the situation when two walkers are involved. Interference, responsible
for the unusual behaviour of the single walker, should also play a considerable role when two
walkers are involved. The possibility of changing the input states (in particular the possibility
of choosing entangled initial walker states) adds another interesting point to the analysis. In
the following, we study the evolution of the meeting probability for two walkers. We point
out the differences to the classical case and discuss the influence of the input state on this
probability.

The paper is organized as follows: first we give a brief review of the concept of the discrete
time quantum walk on an infinite line and its properties. Based on this we generalize the two-
particle quantum walk for both distinguishable and indistinguishable walkers and define the
meeting problem. This problem is analysed in section 3. The asymptotic behaviour of the
meeting probability is derived. Further, the effect of entanglement and indistinguishability of
the walkers is examined. In the conclusions we summarize the obtained results and discuss
possible development. Finally, in the appendix the properties of the meeting problem in the
classical random walk are derived.

2. Description of the walk

We first briefly summarize the description of the quantum random walk; for more details see
e.g. [3]. We consider a coined quantum walk on an infinite line. The Hilbert space of the
particle H consists of the position space HP with the basis {|m〉|m ∈ Z}, which is augmented
by a coin space

HC = {|L〉, |R〉}. (1)
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The particle moves on the grid in discrete time steps in dependence on the coin state; the
operator which induces a single displacement has the form

S =
∑
m

|m − 1〉〈m| ⊗ |L〉〈L| +
∑
m

|m + 1〉〈m| ⊗ |R〉〈R|. (2)

A single step of the particle consists of a rotation of the coin state given by an arbitrary unitary
matrix C and the conditional displacement S. The time evolution operator U describing one
step of the quantum walk takes the form

U = S(I ⊗ C). (3)

If the initial state of the walker is |ψ(0)〉, then after t steps its state will be given by the
successive application of U on the initial state

|ψ(t)〉 = Ut |ψ(0)〉. (4)

The probability distribution generated by such a quantum walk is given by

P(m, t) = |〈m,L|ψ(t)〉|2 + |〈m,R|ψ(t)〉|2. (5)

In our paper we concentrate on a particular case when the rotation of the coin is given by the
Hadamard transformation

H = 1√
2

(
1 1
1 −1

)
, (6)

since this is the most studied example of an unbiased quantum walk. For quantum walks with
arbitrary unitary coin, see e.g. [26].

We will describe the wavefunction of the walker at time t by the set of two-component
vectors of the form

ψ(m, t) =
(

ψL(m, t)

ψR(m, t)

)
, (7)

where ψL(m, t) (ψR(m, t)) is the probability amplitude that the walker is at time t on the site
m with the coin state |L〉 (|R〉). The wavefunction thus has the form

|ψ(t)〉 =
∑
m

(ψL(m, t)|m,L〉 + ψR(m, t)|m,R〉). (8)

Throughout the text we will use symbols |ψL(R)(t)〉, ψL(R)
i,j (m, t) for the vectors and the

probability amplitudes, under the assumption that the initial state of the walker was

|ψL(R)(0)〉 = |0, L(R)〉, (9)

similarly P L(R)(m, t) will be the corresponding probabilities.
From the time evolution of the wavefunction (4) follows the dynamics of the two-

component vectors ψ(m, t)

ψ(m, t + 1) = 1√
2

(
0 0
1 −1

)
ψ(m − 1, t) +

1√
2

(
1 1
0 0

)
ψ(m + 1, t). (10)

Thus the description of the time evolution of the walker reduces to a set of difference equations.
Nayak and Vishwanath in [6] have found the analytical solution of (10) and derived the
asymptotic form of the probability distribution. Before we proceed with the generalization
of the quantum walk for two particles we will summarize the properties of the single walker
probability distribution derived in [6], which we will use later for the estimation of the meeting
probability. According to [6] the probability distribution of one walker is almost uniform in
the interval (s − t/

√
2, s + t/

√
2), where s is the initial position of the walker, with the
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Figure 1. Probability distribution of a quantum random walker after 100 steps and the slow-varying
estimation.

value ≈1/t . Around the points s ± t/
√

2 are peaks of width of the order of t1/3 and the
probability is approximately t−2/3. Outside this region the probability decays faster than any
inverse polynomial in t and therefore we will neglect this part. We will also use the slow
oscillating part of the walker probability distribution derived in [6] which has the form

P
L(R)
slow (x, t) = 2

πt
(
1 ± x

t

)√
1 − 2x2

t2

, (11)

for the case that the initial coin state was L(R).
The main difference between classical and quantum random walk on a line is the shape

of the probability distribution. Due to its wave-like character the quantum walker spreads
quadratically faster than the classical one and its variance goes like σ ∼ t , in contrast with the
result for the classical case σ ∼ √

t .
To visualize the properties of the quantum walk we plot in figure 1 the probability

distribution and the slow-varying estimation. The initial conditions of the coin were chosen to
be 1√

2
(|L〉 + i|R〉), which leads to an unbiased distribution. The slow-varying estimation for

the symmetric probability distribution is given by

P
sym
slow(x, t) = 1

2

(
P L

slow(x, t) + P R
slow(x, t)

) = 2

πt
(
1 − x2

t2

)√
1 − 2x2

t2

. (12)

Using this description of the quantum walk we now proceed to the analysis of the quantum
walk for two non-interacting distinguishable and indistinguishable particles.

2.1. Distinguishable walkers

The Hilbert space of the two walkers is given by a tensor product of the single walker spaces,
i.e.

H = (HP ⊗ HC)1 ⊗ (HP ⊗ HC)2. (13)
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Each walker has its own coin which determines his movement on the line. Since we assume
that there is no interaction between the two walkers they evolve independently and the time
evolution of the whole system is given by a tensor product of the single walker time evolution
operators (3). We describe the state of the system by vectors

ψ(m, n, t) =




ψLL(m, n, t)

ψRL(m, n, t)

ψLR(m, n, t)

ψRR(m, n, t)


 , (14)

where e.g. the component ψRL(m, n, t) is the amplitude of the state where the first walker is
on m with the internal state |R〉 and the second walker is on n with the internal state |L〉. The
state of the two walkers at time t is then given by

|ψ(t)〉 =
∑
m,n

∑
i,j=R,L

ψij (m, n, t)|m, i〉1|n, j 〉2. (15)

The conditional probability that the first walker is on a site m at time t, provided that the second
walker is at the same time at site n, is defined by

P(m, n, t) =
∑

i,j=L,R

|〈m, i|〈n, j |ψ(t)〉|2 =
∑

i,j=L,R

|ψij (m, n, t)|2. (16)

Note that if we considered a single quantum walker but on a two-dimensional lattice, with
two independent Hadamard coins for each spatial dimension, (16) would give the probability
distribution generated by such a two-dimensional walk. This shows the relation between a
one-dimensional walk with two walkers and a two-dimensional walk.

The reduced probabilities for the first and the second walker are given by

P1(m, t) =
∑

n

P (m, n, t), P2(n, t) =
∑
m

P (m, n, t). (17)

We can rewrite them with the help of the reduced density operators of the corresponding
walkers

ρi(t) = Trj �=i |ψ(t)〉〈ψ(t)|, (18)

in the form

Pi(m, t) =
∑

j

〈m, j |ρi(t)|m, j 〉. (19)

The dynamics of the two walkers is determined by the single walker motion. Since we
can always decompose the initial state of the two walkers into a linear combination of a tensor
product of single walker states and because the time evolution is also given by a tensor product
of two unitary operators, the shape of the state will remain unchanged. Thus we can fully
describe the time evolution of the two quantum walkers with the help of the single walker
wavefunctions. A similar relation holds for the probability distribution (16). Moreover, in the
particular case when the two walkers are initially in a factorized state

|ψ(0)〉 =
(∑

m,i

ψ1i (m, 0)|m, i〉1

)
⊗


∑

n,j

ψ2j (n, 0)|n, j 〉2


 , (20)

which translates into ψij (m, n, 0) = ψ1i (m, 0)ψ2j (n, 0), the probability distribution remains
a product of a single walker probability distributions
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P(m, n, t) = (|ψ1L(m, t)|2 + |ψ1R(m, t)|2)(|ψ2L(n, t)|2 + |ψ2R(n, t)|2)
= P1(m, t)P2(n, t). (21)

However, when the initial state of the two walkers is entangled

|ψ(0)〉 =
∑

α




(∑
m,i

ψα
1i (m, 0)|m, i〉1

)
⊗


∑

n,j

ψα
2j (n, 0)|n, j 〉2





 , (22)

the probability distribution cannot be expressed in terms of single walker distributions but
probability amplitudes

P(m, n, t) =
∑

i,j=L,R

∣∣∣∣∣
∑

α

ψα
1i (m, t)ψα

2j (n, t)

∣∣∣∣∣
2

. (23)

As we have shown above, when the two walkers are initially in a factorized state, the
probability distribution (21) is a product of the reduced distributions and thus the positions
of the walkers are independent. On the other hand, when they are entangled, the probability
distribution differs from a product of the reduced probabilities and the positions of the walkers
are correlated. However, note that the correlations are also present in the classical random
walk with two walkers, if we consider initial conditions of the following form:

P(m, n, 0) =
∑

α

P α
1 (m, 0)P α

2 (n, 0). (24)

The difference between (23) and (24) is that in the quantum case we have probability amplitudes
not probabilities. The effect of the quantum mechanical dynamics is the interference in (23).

Let us now define the meeting problem. We ask for the probability that the two walkers
will be detected at the position m after t steps. This probability is given by the norm of the
vector ψ(m,m, t)

MD(m, t) =
∑

i,j=L,R

|ψij (m,m, t)|2 = P(m,m, t). (25)

As we have seen above for a particular case when the two walkers are initially in a factorized
state of the form (20) this can be further simplified to the multiple of the probabilities that the
individual walkers will reach the site. However, this is not possible in the situation when the
walkers are initially entangled (22). The entanglement introduced in the initial state of the
walkers leads to the correlations between the walkers position and thus the meeting probability
is no longer a product of the single walker probabilities.

2.2. Indistinguishable walkers

We now analyse the situation when the two walkers are indistinguishable. Because we work
with indistinguishable particles we use the Fock space and creation operators, we use symbols
a
†
(m,i) for bosons and b

†
(n,j) for fermions, e.g. a

†
(m,i) creates one bosonic particle at position m

with the internal state |i〉. The time evolution is now given by the transformation of the creation
operators, e.g. for bosons a single displacement is described by the following transformation
of the creation operators

a
†
(m,L) −→ 1√

2

(
a
†
(m−1,L) + a

†
(m+1,R)

)
a
†
(m,R) −→ 1√

2

(
a
†
(m−1,L) − a

†
(m+1,R)

)
,

(26)
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similarly for the fermionic walkers. The dynamics is defined on a one-particle level. We
will describe the state of the system by the same vectors ψ(m, n, t) as for the distinguishable
walkers. The state of the two bosonic and fermionic walkers analogous to (15) for the
distinguishable is given by

|ψB(t)〉 =
∑
m,n

∑
i,j=L,R

1

2
(ψij (m, n, t) + ψji(n,m, t))a

†
(m,i)a

†
(n,j)|vac〉,

|ψF (t)〉 =
∑
m,n

∑
i,j=L,R

1

2
(ψij (m, n, t) − ψji(n,m, t))b

†
(m,i)b

†
(n,j)|vac〉,

(27)

where |vac〉 is the vacuum state. In the case of two bosonic walkers initially in the same state
we have to include an additional factor of 1/

√
2, to ensure proper normalization.

The conditional probability distribution is given by

PB,F (m, n, t) =
∑

i,j=L,R

|〈1(m,i)1(n,j)|ψB,F (t)〉|2

=
∑

i,j=L,R

|ψij (m, n, t) ± ψji(n,m, t)|2, (28)

for m �= n, and for m = n

PB(m,m, t) = |〈2(m,L)|ψB(t)〉|2 + |〈2(m,R)|ψB(t)〉|2 + |〈1(m,L)1(m,R)|ψB(t)〉|2
= 2|ψLL(m,m, t)|2 + 2|ψRR(m,m, t)|2

+ |ψLR(m,m, t) + ψRL(m,m, t)|2
= MB(m, t),

PF (m,m, t) = |〈1(m,L)1(m,R)|ψF (t)〉|2
= |ψLR(m,m, t) − ψRL(m,m, t)|2
= MF (m, t). (29)

The diagonal terms of the probability distribution (29) define the meeting probability we wish
to analyse.

Let us now specify the meeting probability for the case when the probability amplitudes
can be written in a factorized form ψij (m, n, t) = ψ1i (m, t)ψ2j (n, t), which for the
distinguishable walkers corresponds to the situation when they are initially not correlated.
In this case the meeting probabilities are given by

MB(m, t) = 2|ψ1L(m, t)ψ2L(m, t)|2 + 2|ψ1R(m, t)ψ2R(m, t)|2
+ |ψ1L(m, t)ψ2R(m, t) + ψ1R(m, t)ψ2L(m, t)|2, (30)

for bosons and

MF (m, t) = |ψ1L(m, t)ψ2R(m, t) − ψ1R(m, t)ψ2L(m, t)|2, (31)

for fermions. We see that they differ from the formulae for the distinguishable walkers, except
a particular case when the two bosons start in the same state, i.e. ψ1(m, 0) = ψ2(m, 0) =
ψ(m, 0) for all integers m. For this initial state we obtain

MB(m, t) = |ψL(m, t)|4 + |ψR(m, t)|4 + 2|ψL(m, t)ψR(m, t)|2
= (|ψL(m, t)|2 + |ψR(m, t)|2)2

= P 2(m, t), (32)

which is the same as for the case of distinguishable walkers starting at the same point with the
same internal state.
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We conclude this section by emphasizing that, except the case of two bosons with the
same initial state, the probability of meeting differs from the case of distinguishable particles
and we have to use the probability amplitudes, whereas for the distinguishable walkers we can
reduce it to one-particle probabilities.

3. Analysis of the meeting problem

Let us now compare the meeting problem in the classical and quantum case. We study the
two following probabilities: the total probability of meeting after t step has been performed
defined by

M(t) =
∑
m

M(m, t), (33)

and the overall probability of meeting during some period of steps T defined as

M(T ) = 1 −
T∏

t=1

(1 − M(t)). (34)

The total probability of meeting M(t) is the probability that the two walkers meet at time t
anywhere on the lattice; the overall probability of meeting M(T ) is the probability that they
meet at least once anywhere on the lattice during the first T steps.

3.1. Distinguishable walkers

We first concentrate on the influence of the initial state on the meeting probability for the
distinguishable walkers. We consider three situations, the walker will start localized with
some initial distance 2d (for odd initial distance they can never meet, without loss of generality
we assume that the first starts at the position zero and the second at the position 2d), with the
coin states: first, right for the first walker and left for the second

ψRL(0, 2d, 0) = 1, (35)

second, the symmetric initial conditions 1/
√

2(|L〉 + i|R〉) for both

ψ(0, 2d, 0) = 1

2




1
i
i

−1


 (36)

and third, left for the first walker and right for the second

ψLR(0, 2d, 0) = 1. (37)

In the first case the probability distributions of the walkers are biased to the right for the first
walker, respectively to the left for the second, and thus the walkers move towards each other.
In the second case the walkers mean positions remain unchanged, as for this initial condition
the single walker probability distribution is symmetric and unbiased. In the last case the
walkers are moving away from each other as their probability distributions are biased to the
left for the first one and to the right for the second.

Let us now specify the meeting probabilities. Recalling the expressions for the probability
distributions P L and P R , we can write the total meeting probabilities with the help of the
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Figure 2. Time evolution (left) of the total probability of meeting for the three types of initial
states and (right) the classical random walk with two walkers. The initial distance is set to 10 and
20 points.

relations (21), (25) and (33) as

MRL(t, d) =
∑
m

P R(m, t)P L(m − 2d, t)

MS(t, d) =
∑
m

P L(m, t) + P R(m, t)

2

P L(m − 2d, t) + P R(m − 2d, t)

2

MLR(t, d) =
∑
m

P L(m, t)P R(m − 2d, t).

(38)

We see that the meeting probability is fully determined by the single walker probability
distribution.

Figure 2 shows the time evolution of the total probability of meeting for the three studied
situations and compares it with the classical case. The initial distance is set to 10 and 20
points. The plot clearly shows the difference between the quantum and the classical case.

We derive some of the properties of the classical meeting problem in the appendix. The
main results are the following. The meeting probability can be estimated by

Mcl(t, d) ≈ 1√
πt

exp

(
−d2

t

)
. (39)

This function has a maximum for t = 2d2; the peak value is given approximately by

Mcl(2d2, d) ≈ 1√
2πed

. (40)

In contrast to the classical walk, in the quantum case the meeting probability is oscillatory.
The oscillations come from the oscillations of the single walker probability distribution. After
some rapid oscillations in the beginning we get a periodic function with the characteristic
period of about six steps, independent of the initial state. In the quantum case the maximum
of the meeting probability is reached sooner than in the classical case—the number of steps
needed to hit the maximum is linear in the initial distance d. This can be understood from
the shape of the walkers probability distribution. The maximum of the meeting probability is
obtained when the peaks of the probability distribution of the first and second walkers overlap.
If the initial distance between the two walkers is 2d then the peaks will overlap approximately
after

√
2d steps. The value of the maximum depends on the choice of the initial state.

Let us derive analytical formulae for the meeting probabilities in the quantum case. For
t �

√
2d we consider the slowly varying part of the walker probability distribution (11), (12)
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and estimate the sums in (38) by the integrals

MRL(t, d) ≈ 2

π2t2

∫ t√
2

2d− t√
2

dx(
1 − x

t

)(
1 + x−2d

t

)√
1 − 2 x2

t2

√
1 − 2 (x−2d)2

t2

MS(t, d) ≈ 2

π2t2

∫ t√
2

2d− t√
2

dx(
1 − x2

t2

)(
1 − (x−2d)2

t2

)√
1 − 2 x2

t2

√
1 − 2 (x−2d)2

t2

MLR(t, d) ≈ 2

π2t2

∫ t√
2

2d− t√
2

dx(
1 + x

t

)(
1 − x−2d

t

)√
1 − 2 x2

t2

√
1 − 2 (x−2d)2

t2

(41)

which can be evaluated in terms of elliptic integrals. Note that the integrals diverge for d = 0,
i.e. for the case when the two walkers start at the same point. We will discuss this particular
case later, for now we will suppose that d > 0. Formulae (41) can be expressed in the form

MRL(t, d) ≈ F+{2(t − d)(t − (4 − 2
√

2)d)K(a)

+
√

2((t − (4 + 2
√

2)d)(t − (4 − 2
√

2)d)�(b+|a) − t2�(c+|a))}
MS(t, d) ≈ π2F+F−

4
{16d(t2 − d2)(t + (4 + 2

√
2)d)(t − (4 − 2

√
2)d)K(a)

+
√

2(t + (4 + 2
√

2)d)(t − (4 + 2
√

2)d)(t + (4 − 2
√

2)d)

× (t − (4 − 2
√

2)d)((t + d)�(b+|a) + (t − d)�(b−|a))

−
√

2t2((t + d)(t + (4 + 2
√

2)d)(t + (4 − 2
√

2)d)�(c+|a)

+ (t − d)(t − (4 + 2
√

2)d)(t − (4 − 2
√

2)d)�(c−|a))}
MLR(t, d) ≈ F−{2(t + d)(t + (4 + 2

√
2)d)K(a)

−
√

2((t + (4 + 2
√

2)d)(t + (4 − 2
√

2)d)�(b−|a) − t2�(c−|a))}, (42)

where K(a) is the complete elliptic integral of the first kind and �(x|a),�(y|a) are the
complete elliptic integrals of the third kind (see e.g. [27], chapter 17), a, b±, c± and F± are
given by

F± = 2t

π2d(t ∓ d)(t (2 +
√

2) ∓ 4d)(t (2 − √
2) ∓ 4d)

a = i

√
t2

2d2
− 1

b± = (1 ± √
2)(t − √

2d)

d(
√

2 ∓ 2)

c± = (t (
√

2 ∓ 2) + 4d)(t − √
2d)√

2d(t (
√

2 ± 2) − 4d)
.

(43)

From relations (42) we can estimate the peak value of the meeting probability

MRL(
√

2d, d) ≈ 2 − 3
√

2

πd(18 − 13
√

2)

MS(
√

2d, d) ≈ 2

πd

MLR(
√

2d, d) ≈ 2 + 3
√

2

πd(18 + 13
√

2)
.

(44)
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The peak value shows 1/d dependence on the initial distance between the two walker in all
three studied cases, similar to the classical situation (40).

Let us now analyse the asymptotic behaviour of the meeting probability. In the appendix
we show that in the classical case the meeting probability can be estimated by

Mcl(t, d) ≈ 1√
πt

(
1 − d2

t

)
. (45)

In the quantum case we begin with the observation that the coefficients at the highest power
of t with the elliptic integrals of the third kind are the same but with the opposite signs for
�(b|a) and �(c|a). Moreover, b± and c± goes like −t as t approaches infinity, and thus all
of the � functions have the same asymptotic behaviour. Due to the opposite sign for �(b|a)

and �(c|a) the leading order terms cancel and the contribution from this part to the meeting
probability is of higher order of 1/t compared to the contribution from the complete elliptic
integral of the first kind K(a). The asymptotic of the function K(a) is given by

K(a) ≈ d
√

2 ln
(

2
√

2t
d

)
t

. (46)

Inserting this approximation into (42) we find that the leading order term for the meeting
probability in all three studied situations is given by (up to the constant factor a)

MD(t, d) ≈ a
ln

(
2
√

2t
d

)
t

. (47)

Therefore, the meeting probability decays faster in the quantum case and goes like ln(t/d)/t

compared to the classical case (45). However, the decay is not quadratically faster, as one could
expect from the fact that the single walker probability distribution spreads quadratically faster
in the quantum walk. The exponential peaks in the probability distribution of the quantum
walker slow down the decay.

The above derived results hold for d > 0, i.e. the initial distance has to be non-zero. As
we have mentioned before, for d = 0 the integrals (41) diverge, and therefore we cannot use
this approach for the estimation of the meeting probability. There does not seem to be an easy
analytic approach to the problem. However, from the numerical results, the estimation

MD(t) ≈ b
ln t

t
(48)

fits the data the best (b being a constant prefactor).
For illustration we plot in figure 3 the meeting probability and the estimations on a long

time scale. On the first plot is the case MRL with the initial distance 20 points, on the second
plot we have MS and the initial distance is zero.

Let us now focus on the overall meeting probability defined by (34). In figure 4 we plot
the overall probability that the two walkers will meet during the first T = 100 steps. On the
first plot we present the difference between the three studied quantum situations, whereas the
second plot, where the meeting probability is on the log scale, uncovers the difference between
the quantum and the classical random walk. In the log scale plot we can see that the overall
meeting probability decays slower in the quantum case than in the classical case, up to the
initial distance of

√
2T . This can be understood by the shape and the time evolution of a single

walker probability distribution. After t steps the maximums of the probability distribution are
around the point s± t√

2
, where s is the initial starting point of the quantum walker. For t = 100

steps the peaks are around the points s ± 70. So when the two walkers are initially more than
140 points away, the peaks do not overlap, and the probability of meeting is given by just the
tails of the single walker distributions, which have almost classical behaviour. From the first
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Figure 3. Left: comparison of the meeting probability with the elliptic function estimation and
the leading order term. The initial distance is set to 20 points. Right: comparison of the meeting
probability for the symmetric initial condition and zero initial distance with the estimation.
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Figure 4. Left: the overall probability of meeting for two distinguishable quantum and classical
walker during first 100 steps as a function of the initial distance. Right: same plot on the log scale.
Only the values for even points are plotted since for odd initial distance the walkers never meet.

plot we see that the overall meeting probability is broader in the quantum case compared to the
classical, which drops down very fast. The numerical results in figure 5 show that the width
of the overall meeting probability grows linearly with the upper bound T, the slope depends
on the choice of the initial coin state. On the other hand in the classical case the width grows
like

√
T .

Let us now analyse the overall meeting probability on a long time scale. In the appendix
we show that in the classical case the overall meeting probability is approximately given by

Mcl(T , d) ≈ 1 − exp

(
−2

√
T

π
exp

(
−d2

T

))
exp

(
2dErfc

(
d√
T

))
. (49)

In the quantum case we consider ln(1−MD(T , d)) (MD stands for all three particular quantum
cases) and estimate it with the help of (42) by

ln(1 − MD(T , d)) =
T∑

t=d

ln(1 − MD(t, d)) ≈ −
T∑

t=d

MD(t, d)

≈ −
∫ T

√
2d

MD(t, d) dt. (50)
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Figure 5. Width of the overall meeting probability as a function of the upper bound T.

Therefore we can estimate the overall meeting probability for T >
√

2d by

MD(T , d) ≈ 1 − exp

(
−

∫ T

√
2d

MD(t, d) dt

)
. (51)

The meeting probability in the quantum case (42) involves elliptic integrals in a rather
complicated form. However, we can estimate how fast the overall meeting probability
converges to 1 for a fixed initial distance. This is determined by the rate at which the
integral in (51) diverges. Before we proceed note that∫ αd

√
2d

MD(t, d) dt = C(α), (52)

i.e. the integral does not depend on the initial distance d. For large t we can estimate the
meeting probability by (47) and thus divide the integral in (51) into∫ T

√
2d

MD(t, d) dt ≈
∫ αd

√
2d

MD(t, d) dt +
2
√

2

π2

∫ T

αd

ln
( 2

√
t

d

)
t

dt

≈ C(α) +

√
2

π2
ln2

(
2
√

2T

d

)
, (53)

for appropriately large α. Therefore the exponent in (51) goes like − ln2(T ) for large T. On
the other hand, in the classical case from the estimation (49) we obtain that the asymptotic
behaviour of the exponent is given by −√

T . Comparing these two we conclude that the
overall meeting probability converges faster to 1 in the classical case.

To conclude, the quadratic speed-up of the width shown in figure 5 follows from the
quadratically faster spreading of the quantum walk. However, the overall meeting probability
still converges to 1, which follows from the fact that the meeting probability decays like ln t

t
.

As we have seen the exponential in (51) vanishes only when the integral diverges and this will
happen only if the decay of the meeting probability is not faster than 1

t
. On the other hand

for large times the meeting probability decays faster in the quantum walk, which leads to the
slower convergence of the overall meeting probability.
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3.2. Effect of the entanglement for distinguishable walkers

We will now consider the case when the two distinguishable walkers are initially entangled.
According to (23) the meeting probability is no longer given by a product of single walker
probability distributions. However, it can be described using single walker probability
amplitudes. We consider the initial state of the following form:

|ψ(0)〉 = |0, 2d〉 ⊗ |χ〉, (54)

where |χ〉 is one of the Bell states

|ψ±〉 = 1√
2
(|LR〉 ± |RL〉),

|φ±〉 = 1√
2
(|LL〉 ± |RR〉). (55)

Recalling the probability amplitudes ψL(R)(m, t) we can write the probability distributions of
the two quantum walkers (16) in the form

Pψ±(m, n, t) = 1

2

∑
i,j=L,R

∣∣ψL
i (m, t)ψR

j (n − 2d, t) ± ψR
i (m, t)ψL

j (n − 2d, t)
∣∣2

,

Pφ±(m, n, t) = 1

2

∑
i,j=L,R

∣∣ψL
i (m, t)ψL

j (n − 2d, t) ± ψR
i (m, t)ψR

j (n − 2d, t)
∣∣2

.

(56)

The meeting probabilities are given by the sum of the diagonal terms in (56)

Mψ±(t, d) = 1

2

∑
m




∑
i,j=L,R

∣∣ψL
i (m, t)ψR

j (m − 2d, t) ± ψR
i (m, t)ψL

j (m − 2d, t)
∣∣2


 , (57)

Mφ±(t, d) = 1

2

∑
m




∑
i,j=L,R

∣∣ψL
i (m, t)ψL

j (m − 2d, t) ± ψR
i (m, t)ψR

j (m − 2d, t)
∣∣2


 . (58)

The reduced density operators for both coins are maximally mixed for all four bell states (55).
From this fact follows that the reduced density operators of the walkers are

ρ1(t) = 1
2 (|ψL(t)〉〈ψL(t)| + |ψR(t)〉〈ψR(t)|)

ρ2(t) = 1
2

(∣∣ψL
d (t)

〉〈
ψL

d (t)
∣∣ +

∣∣ψR
d (t)

〉〈
ψR

d (t)
∣∣), (59)

where
∣∣ψL(R)

d (t)
〉

are analogous to |ψL(R)(t)〉 but shifted by 2d, i.e.

|ψL(R)(t)〉 = 1

2

∑
m

(
ψ

L(R)
L (m, t)|m,L〉 + ψ

L(R)
R (m, t)|m,R〉)

∣∣ψL(R)
d (t)

〉 = 1

2

∑
m

(
ψ

L(R)
L (m − 2d, t)|m,L〉 + ψ

L(R)
R (m − 2d, t)|m,R〉). (60)

The reduced probabilities are therefore

P1(m, t) = 1
2 (P L(m, t) + P R(m, t))

P2(m, t) = P1(m − 2d, t),
(61)

which are symmetric and unbiased. Note that the product of the reduced probabilities (60)
gives the probability distribution of a symmetric case studied in the previous section. Therefore
to catch the interference effect in the meeting problem we compare the quantum walks
with entangled coin states (55) with the symmetric case MS . Figure 6 shows the meeting
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Figure 6. Left: comparison of the meeting probability for the initially entangled coins and the
symmetric case. Right: the difference in the meeting probability.

probabilities and the difference Mχ − MS ; the initial distance between the two walkers was
chosen to be 10 points.

We see that the effect of the entanglement could be both positive or negative. Note that

Mψ−(t, d) − MS(t, d) = −(Mφ+(t, d) − MS(t, d))

Mφ−(t, d) − MS(t, d) = −(Mψ+(t, d) − MS(t, d)),
(62)

so the effect of |ψ−〉 is opposite to |φ+〉 and |φ−〉 is opposite to |ψ+〉. The main difference is
around the point t ≈ √

2d, i.e., the point where for the factorized states the maximum of the
meeting probability is reached. The peak value is nearly doubled for Mψ− (note that for MS

the peak value is given by (44), which for d = 10 gives ≈ 0.063), but significantly reduced
for Mφ+ . On the long time scale, however, the meeting probability Mψ− decays faster than
in the other situations. According to the numerical simulations, the meeting probabilities for
|ψ+〉 and |φ±〉 maintain the asymptotic behaviour ln t/t , but for |ψ−〉 it goes like

Mψ−(t, d) ∼ 1

t
. (63)

The initial entanglement between the walkers influences the height of the peaks giving the
maximum meeting probability and also affects the meeting probability on the long time scale.
We leave the rigorous proof of the asymptotic meeting probability for future investigation. In
this connection the weak limit of the two-point correlation function in the two-dimensional
quantum walk investigated in [10] and [11] gives interesting hints.

Let us briefly comment on the overall meeting probability. As we have discussed in the
previous section the overall meeting probability converges to 1 only if the decay of the meeting
probability is not faster than 1

t
. As we have seen the entanglement could speed-up the decay

of the meeting probability but it is never faster than 1
t
. Therefore we conclude that for the

initially entangled walkers the overall meeting probability converges to 1.

3.3. Indistinguishable walkers

Let us briefly comment on the effect of the indistinguishability of the walkers on the
meeting probability. As an example, we consider the initial state of the walkers of the
form |1(0,R)1(2d,L)〉, i.e. one walker starts at the site zero with the right coin state and one starts
at 2d with the left state. This corresponds to the case MRL for the distinguishable walkers.
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Figure 7. Left: comparison of the meeting probability for bosons, fermions and distinguishable
walkers. Right: the difference in the meeting probability.

The meeting probabilities are according to (30), (31) given by

MB(t, d) =
∑
m

{
2
∣∣ψR

L (m, t)
∣∣2∣∣ψL

L (m − 2d, t)
∣∣2

+ 2
∣∣ψR

R (m, t)
∣∣2∣∣ψL

R(m − 2d, t)
∣∣2

+
∣∣ψR

L (m, t)ψL
R (m − 2d, t) + ψR

R (m, t)ψL
L (m − 2d, t

∣∣2}
MF (t, d) =

∑
m

(∣∣ψR
L (m, t)ψL

R (m − 2d, t) − ψR
R (m, t)ψL

L (m − 2d, t)
∣∣2)

. (64)

In figure 7 we plot the meeting probabilities and the difference MB,F − MRL. From the
figure we infer that the peak value is in this case only slightly changed. Significant differences
appear on the long time scale. The meeting probability is greater for bosons and smaller for
fermions compared to the case of distinguishable walkers. This behaviour can be understood
by examining the asymptotic properties of the expressions (64). Numerical evidence indicates
that the meeting probability for bosons has the asymptotic behaviour of the form ln(t)/t . For
fermions the decay of the meeting probability is faster having the form

MF (t, d) ∼ 1

t
. (65)

The fermion exclusion principle simply works against an enhancement of the meeting
probability. We leave the rigorous proof for future development.

For the overall meeting probability we can use the same arguments as in the previous
section and conclude that it will converge to 1 for both bosons and fermions.

4. Conclusions

We have defined and analysed the problem of meeting in the quantum walk on an infinite line
with two quantum walkers. For distinguishable walkers we have derived analytical formulae
for the meeting probability. The asymptotic behaviour following from these results shows that
the meeting probability decays faster but not quadratically faster than in the classical random
walk. This results in the slower convergence of the overall meeting probability, however it still
converges to 1. This is due to the fact that the meeting probability does not decay faster than
1
t
. Such a situation might occur in higher dimensional walks and could result in yet another

difference between the classical and the quantum walks. We have studied the influence of
the entanglement and the indistinguishability of the walkers on the meeting probability. The
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influence is particularly visible for fermions and in the case of distinguishable walkers for the
case of initial entangled singlet state. Although the meeting probability decays faster in these
cases the overall meeting probability will still converge to 1, as the decay is never faster than
the threshold 1

t
.

Let us briefly comment on the correspondence between a one-dimensional walk with two
quantum walkers and a two-dimensional walk. As two-dimensional walks have been studied
by many authors the possibility of a common coin (i.e. a coin which is not a tensor product)
for both walkers has arisen. In the context of one-dimensional walk with two walkers this
would mean some kind of interaction between the two walkers. It would be of interest to find
coins which would attract the walkers and thus lead to an increase of the meeting probability,
or repulsive coins with the opposite effect. Such an interaction should be of infinite range as
the walk will be driven by the same coin independent of the walkers distance. We can also
think about local interactions where the walk is driven by a common coin for both walkers
only when the distance between the walkers is smaller than some constants or they are at the
same lattice point.
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Appendix A. The meeting problem in the classical random walk

Let us define the meeting problem on the classical level. We assume two particles which in each
step of the process can perform randomly a step to the left or to the right on a one-dimensional
lattice labelled by integers. Initial distance between the two walkers is 2d, because for odd
initial distance the two walkers never meet, due to the transitional invariance we can assume
that one walker starts in the vertex labelled by 0 and the other in the vertex 2d. We assume
complete randomness, i.e. the probabilities for the step right or left are equal. We ask for
the probability that the two particles meet again after t steps either at a certain position m or
we might ask for the total probability to meet (the sum of probabilities at all of the possible
positions). Simple analysis reveals that the probability to meet at a certain position m equals

Mcl(t,m, d) = 1

22t

(
t

t+m
2

)(
t

t+m−2d
2

)
. (A.1)

The total probability that the two particles are reunited after t steps reads

Mcl(t, d) =
t∑

m=2d−t

1

22t

(
t

t+m
2

)(
t

t+m−2d
2

)
, (A.2)

which simplifies to

Mcl(t, d) = 1

22t

(
2t

m + d

)
. (A.3)

This function has a maximum for t = 2d2 of value

Mcl(2d2, d) = (4d2)!

16d2
(d(2d − 1))!(d(2d + 1))!

. (A.4)
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To obtain the asymptotic behaviour of the meeting probability we approximate the single-
walker probability distribution by a Gaussian

Pcl(x, t, d) = 1√
πt

exp

(
− (x − 2d)2

2t

)
, (A.5)

which leads to the following estimate on the meeting probability:

Mcl(t, d) ≈
∫ +∞

−∞
Pcl(x, t, 0)Pcl(x, t, d) dx = 1√

πt
exp

(
−d2

t

)
. (A.6)

With the help of this estimation we can simplify the maximal probability of meeting into

Mcl(2d2, d) ≈ 1√
2πed

. (A.7)

For a fixed initial distance d we get the long-time approximation for t > d2

Mcl(t, d) ≈ 1√
πt

(
1 − d2

t

)
. (A.8)

Finally we study the overall probability that the two walkers will meet at least once during
first T steps, which is given by

Mcl(T , d) = 1 −
T∏

k=d

(1 − Mcl(k, d)). (A.9)

To estimate this function we take the logarithm of 1 − Mcl(T , d) and use the first order of the
Taylor expansion to obtain

ln(1 − Mcl(T , d)) =
T∑

k=d

ln(1 − Mcl(k, d)) ≈ −
T∑

k=d

Mcl(k, d). (A.10)

From this with the help of relation (A.3) we get the approximation of the overall meeting
probability

Mcl(T , d) ≈ 1 − exp

(
−

T∑
k=d

1

4k

(
2k

k + d

))
. (A.11)

We estimate the sum in the exponential (A.11) by an integral with the help of formula (A.6)

T∑
k=d

1

4k

(
2k

k + d

)
≈

∫ T

0

1√
πt

exp

(
−d2

t

)
dt

= 2

√
T

π
exp

(
−d2

T

)
− 2dErfc

(
d√
T

)
, (A.12)

where Erfc is the complementary error function

Erfc(x) = 1 − Erf(x) = 1 − 2

π

∫ x

0
e−t2

dt. (A.13)

With the help of the estimation (A.12) we obtain the approximation of the overall meeting
probability

Mcl(T , d) ≈ 1 − exp

(
−2

√
T

π
exp

(
−d2

T

))
exp

(
2dErfc

(
d√
T

))
. (A.14)
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